Discipline :MECHANICAL ENGG.	Semester :3 rd	Name of the Teaching Faculty: PRAVAT KUMAR SWAIN Semester From Date:01.07.2024 To	
SUBJECT: STRENGH OF	No. of days/per week		
MATERIAL (TH-2)	class allotted: 04	Date:8.11.2024 No. of Weeks:15	
Week	Class Day	Theory Topics	
1 st	1 st	 1.Simple stress& strain Types of load, stresses & strains, (axial and tangential), 	
	2 nd	 Hooke's law, young's modulus, bulk modulus, modulus of rigidity, 	
	3 rd	 Poisson's ratio, derive the relation between three elastic constants 	
	4 th	 Principle of super position, stresses in composite section 	
2 nd	1 st	 Temperature stress, determine the temperature stress in composite bar (single core) 	
	2 nd	 Strain energy and resilience, stress due to gradually applied, suddenly applied and impact load 	
	3 rd	 Strain energy and resilience, stress due to gradually applied, suddenly applied and impact load 	
	4 th	Simple problems on above	
	1 st	Simple problems on above	
3rd	2 nd	Simple problems on above	
	3rd	2.Thin cylindrical and spherical shell under internal pressure Definition of hoop and longitudinal stress, Strain	
	4 th	Definition of hoop and longitudinal stress, strain	
4 th	1 st	 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain 	
	2 nd	 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain 	
	3 rd	 Computation of the change in length, diameter and volume 	
	4 th	Simple problems on above	
	1 st	Simple problems on above	
	2 nd	CLASS TEST	
5 th		3. Two dimensional stress systems	
	3rd	Determination of normal stress, shear stress and resultant stress on oblique plane	
	4 th	Determination of normal stress, shear stress and resultant stress on oblique plane	
6 th	1 st	 Determination of normal stress, shear stress and resultant stress on oblique plane 	
	2 nd	 Location of principal plane and computation of principal stress 	
	3 rd	 Location of principal plane and computation of principal stress 	
	4 th	 Location of principal plane and computation of principal stress 	
	1 st	 Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle 	

7 th	2 nd	 Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle 		
	3 rd	Location of principal plane and computation of principal stress and maximum Shear stress using Mohr's circle		
	4 th	 Location of principal plane and computation of principal stress and maximum Shear stress using Mohr's circle 		
8 th	1 st	4.Bending moment& shear force Types of beam and load		
	2 nd	Types of beam and load		
	3 rd	Types of beam and load		
	4 th	Concepts of shear force and bending moment		
	1 st	Concepts of shear force and bending moment		
	2 nd	Concepts of shear force and bending moment		
9th -	3 rd	 Shear force and bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and overhanging beam under point load and uniformal distributed load 		
	4 th	 Shear force and bending moment diagram and its salier features illustration in cantilever beam, simply supported bear and overhanging beam under point load and uniforml distributed load 		
10 th	1 st	 Shear force and bending moment diagram and its salier features illustration in cantilever beam, simply supported bear and overhanging beam under point load and uniform distributed load 		
	2 nd	 Shear force and bending moment diagram and its salies features illustration in cantilever beam, simply supported bear and overhanging beam under point load and uniform distributed load 		
	3rd	5.Theory of simple bending Assumptions in the theory of bending,		
	4 th	Assumptions in the theory of bending,		
11 th	1 st	Bending equation, moment of resistance, section modulus & neutral axis.		
	2 nd	Bending equation, moment of resistance, section modulus & neutral axis.		
	3 rd	 Bending equation, moment of resistance, section modulus & neutral axis. 		
	4 th	Solve simple problems		
	1 st	Solve simple problems		
	2 nd	Solve simple problems		
12 th	3 rd	Solve simple problems		
	4 th	CLASS TEST		
	1 st	6.Combined direct & bending stresses Define column		
	and	Axial load, eccentric load on column		
	2 nd	TAME TOdd, cocontro toda on commit		

13 th	3 rd	 Direct stresses, bending stresses, maximum & minimum stresses. numerical Problems on above. 		
	4 th	 Direct stresses, bending stresses, maximum &minimum stresses, numerical problems on above. 		
14 th	1 st	 Buckling load computation using Euler's formula (no derivation) in columns with various end conditions 		
	2 nd	 Buckling load computation using Euler's formula (no derivation in columns with various end conditions 		
	3rd	7.Torsion • Assumption of pure torsion		
	4 th	The torsion equation for solid and hollow circular shaft		
15th	_ 1st	The torsion equation for solid and hollow circular shaft		
	2 nd	The torsion equation for solid and hollow circular shaft		
	3 rd	Comparison between solid and hollow shaft subjected to pure torsion		
	4 TH	CLASS TEST		

RECOMMENDED BOOKS

H Young

Sl. No.	Author	Title of the book	Publisher
01	S Ramamrutham	Strength of Materials	Dhanpat Rai
02	R K Rajput	Strength of Materials	S.Chand
03	R.S khurmi	Strength of Materials	S.Chand
04	G H Ryder	Strength of Materials	Mc millon and
			co.lmtd
05	S Timoshenko and D	Strength of Materials	TMH XX

lateriais I IVI

Prepared By

PRAVAT KUMAR SWAIN
Lecturer Mechanical Engg Deptt

G.LE.T (Polytechnic), Jagatpur, Cuttack

Pricepal
Olet Polytechnic)
Jagatpur, Critick

