| Discipline
:MECHANICAL
ENGG. | Semester :3 rd | Name of the Teaching Faculty: PRAVAT KUMAR SWAIN Semester From Date:01.07.2024 To | | |------------------------------------|---------------------------|--|--| | SUBJECT:
STRENGH OF | No. of
days/per week | | | | MATERIAL
(TH-2) | class allotted:
04 | Date:8.11.2024
No. of Weeks:15 | | | Week | Class Day | Theory Topics | | | 1 st | 1 st | 1.Simple stress& strain Types of load, stresses & strains, (axial and tangential), | | | | 2 nd | Hooke's law, young's modulus, bulk modulus, modulus of
rigidity, | | | | 3 rd | Poisson's ratio, derive the relation between three elastic constants | | | | 4 th | Principle of super position, stresses in composite section | | | 2 nd | 1 st | Temperature stress, determine the temperature stress in composite bar (single core) | | | | 2 nd | Strain energy and resilience, stress due to gradually
applied, suddenly applied and impact load | | | | 3 rd | Strain energy and resilience, stress due to gradually
applied, suddenly applied and impact load | | | | 4 th | Simple problems on above | | | | 1 st | Simple problems on above | | | 3rd | 2 nd | Simple problems on above | | | | 3rd | 2.Thin cylindrical and spherical shell under internal pressure Definition of hoop and longitudinal stress, Strain | | | | 4 th | Definition of hoop and longitudinal stress, strain | | | 4 th | 1 st | Derivation of hoop stress, longitudinal stress, hoop strain,
longitudinal strain and volumetric strain | | | | 2 nd | Derivation of hoop stress, longitudinal stress, hoop strain,
longitudinal strain and volumetric strain | | | | 3 rd | Computation of the change in length, diameter and volume | | | | 4 th | Simple problems on above | | | | 1 st | Simple problems on above | | | | 2 nd | CLASS TEST | | | 5 th | | 3. Two dimensional stress systems | | | | 3rd | Determination of normal stress, shear
stress and resultant stress on oblique
plane | | | | 4 th | Determination of normal stress, shear stress and resultant
stress on oblique plane | | | 6 th | 1 st | Determination of normal stress, shear stress and resultant
stress on oblique plane | | | | 2 nd | Location of principal plane and computation of principal stress | | | | 3 rd | Location of principal plane and computation of principal stress | | | | 4 th | Location of principal plane and computation of principal stress | | | | 1 st | Location of principal plane and computation of principal
stress and maximum shear stress using Mohr's circle | | | 7 th | 2 nd | Location of principal plane and computation of principal
stress and maximum shear stress using Mohr's circle | | | |------------------|-----------------|---|--|--| | | 3 rd | Location of principal plane and computation of principal stress and maximum Shear stress using Mohr's circle | | | | | 4 th | Location of principal plane and computation of principal stress
and maximum Shear stress using Mohr's circle | | | | 8 th | 1 st | 4.Bending moment& shear force Types of beam and load | | | | | 2 nd | Types of beam and load | | | | | 3 rd | Types of beam and load | | | | | 4 th | Concepts of shear force and bending moment | | | | | 1 st | Concepts of shear force and bending moment | | | | | 2 nd | Concepts of shear force and bending moment | | | | 9th - | 3 rd | Shear force and bending moment diagram and its salient
features illustration in cantilever beam, simply supported beam
and overhanging beam under point load and uniformal
distributed load | | | | | 4 th | Shear force and bending moment diagram and its salier
features illustration in cantilever beam, simply supported bear
and overhanging beam under point load and uniforml
distributed load | | | | 10 th | 1 st | Shear force and bending moment diagram and its salier
features illustration in cantilever beam, simply supported bear
and overhanging beam under point load and uniform
distributed load | | | | | 2 nd | Shear force and bending moment diagram and its salies
features illustration in cantilever beam, simply supported bear
and overhanging beam under point load and uniform
distributed load | | | | | 3rd | 5.Theory of simple bending Assumptions in the theory of bending, | | | | | 4 th | Assumptions in the theory of bending, | | | | 11 th | 1 st | Bending equation, moment of resistance, section modulus & neutral axis. | | | | | 2 nd | Bending equation, moment of resistance, section modulus & neutral axis. | | | | | 3 rd | Bending equation, moment of resistance, section modulus &
neutral axis. | | | | | 4 th | Solve simple problems | | | | | 1 st | Solve simple problems | | | | | 2 nd | Solve simple problems | | | | 12 th | 3 rd | Solve simple problems | | | | | 4 th | CLASS TEST | | | | | 1 st | 6.Combined direct & bending stresses Define column | | | | | and | Axial load, eccentric load on column | | | | | 2 nd | TAME TOdd, cocontro toda on commit | | | | 13 th | 3 rd | Direct stresses, bending stresses, maximum & minimum
stresses. numerical Problems on above. | | | |------------------|-----------------|---|--|--| | | 4 th | Direct stresses, bending stresses, maximum &minimum
stresses, numerical problems on above. | | | | 14 th | 1 st | Buckling load computation using Euler's formula (no
derivation) in columns with various end conditions | | | | | 2 nd | Buckling load computation using Euler's formula (no
derivation
in columns with various end conditions | | | | | 3rd | 7.Torsion • Assumption of pure torsion | | | | | 4 th | The torsion equation for solid and hollow circular shaft | | | | 15th | _ 1st | The torsion equation for solid and hollow circular shaft | | | | | 2 nd | The torsion equation for solid and hollow circular shaft | | | | | 3 rd | Comparison between solid and hollow shaft subjected to pure torsion | | | | | 4 TH | CLASS TEST | | | ## RECOMMENDED BOOKS H Young | Sl. No. | Author | Title of the book | Publisher | |---------|--------------------|-----------------------|---------------| | 01 | S Ramamrutham | Strength of Materials | Dhanpat Rai | | 02 | R K Rajput | Strength of Materials | S.Chand | | 03 | R.S khurmi | Strength of Materials | S.Chand | | 04 | G H Ryder | Strength of Materials | Mc millon and | | | | | co.lmtd | | 05 | S Timoshenko and D | Strength of Materials | TMH XX | lateriais I IVI Prepared By PRAVAT KUMAR SWAIN Lecturer Mechanical Engg Deptt G.LE.T (Polytechnic), Jagatpur, Cuttack Pricepal Olet Polytechnic) Jagatpur, Critick